Advanced Energy Conversion Technologies. Numerical Simulation of Fuel-Rich Methane Turbulent Diffusion Flames.
نویسندگان
چکیده
منابع مشابه
Numerical Simulation of Premixed Turbulent Methane Combustion
In this paper we study turbulent premixed methane flames with swirl using three-dimensional numerical simulation. The simulations are performed using an adaptive time-dependent low Mach number combustion algorithm based on a second-order projection formulation that conserves both species mass and total enthalpy. The species and enthalpy equations are treated using an operator-split approach tha...
متن کاملNumerical Simulation of Premixed Turbulent Methane
In this paper we study the behavior of a premixed turbulent methane flame in three dimensions using numerical simulation. The simulations are performed using an adaptive time-dependent low Mach number combustion algorithm based on a second-order projection formulation that conserves both species mass and total enthalpy. The species and enthalpy equations are treated using an operator-split appr...
متن کاملDirect Numerical Simulation of Turbulent Counterflow Nonpremixed Flames
This paper presents our recent progress in terascale three-dimensional simulations of turbulent nonpremixed flames in the presence of a mean flow strain and fine water droplets. Under the ongoing university collaborative project supported by the DOE SciDAC Program [1] along with the INCITE 2007 Project [2], the study aims at bringing the state-of-the-art highfidelity simulation capability to th...
متن کاملSimulation of premixed turbulent flames
1. Introduction Premixed turbulent flames are of increasing practical importance and remain a significant research challenge in the combustion community. These flames have the potential to operate cleanly and efficiently over a broad range of fuels, and therefore to represent a key element in the implementation of low-emissions burners for a variety of industrial applications. However, it is di...
متن کاملAsymptotic Structure of Rich Methane-Air Flames
The asymptotic structure of unstrained, laminar, fuel-rich, premixed methane flame is analyzed by using a reduced chemical-kinetic mechanism made up of three global steps. Analysis is carried out for values of equivalence ratio greater than 1.3. The flame structure is presumed to comprise three zones: an inert preheat zone, a thin reaction zone, and a post-flame zone. In contrast to previous as...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: KAGAKU KOGAKU RONBUNSHU
سال: 2000
ISSN: 0386-216X,1349-9203
DOI: 10.1252/kakoronbunshu.26.187